Topic: Doppler Principles and the Applications of CW-Doppler

Date: Tuesday 18th September, 2007

Time: 0845-0905

Speaker:

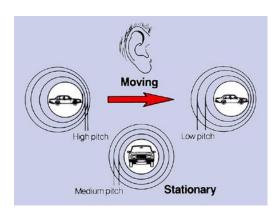
Dr Joseph Graiche MB,BS(HONS),FACP Phlebologist

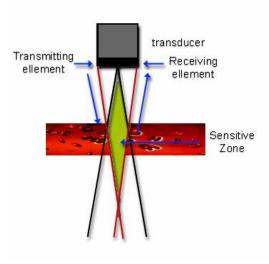
Conference:

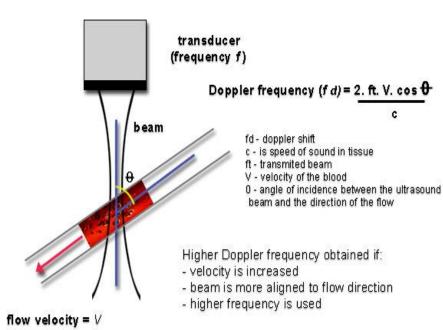
Australian College of Phlebology 2007 Scientific Meeting and Workshops Basic Phlebology Certificate Course (Phlebology Part 1) 18-21 September, Stamford Plaza Double Bay, Sydney, Australia

Session Content

- Indications
- Examination Types
- Results/Reporting
- Sensitivity & Specificity
- Limitations

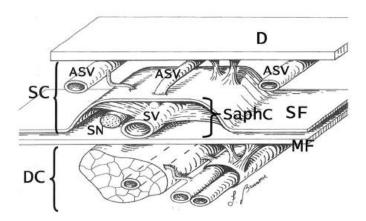

Audience Survey


Use of CW doppler


Indications

- Screening for venous reflux
- Assessment prior to micro-sclerotherapy
- •Exclude co-existent perforator vein, truncal vein &/or tributary vein reflux
- ABI

CW Doppler Principles



Lower Limb Venous Framework

JOURNAL OF VASCULAR SURGERY Volume 36, Number 2

GSV Anatomy

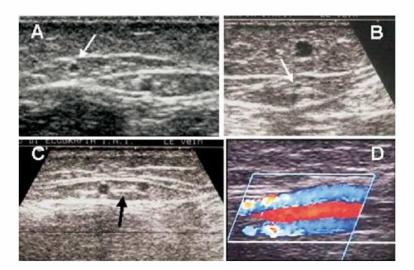


Fig 3. A, At the groin, the anterior accessory of the great saphenous vein (GSV) (arrow) courses deeply in the subcutaneous layer, and below a hyperechoic fascia that resembles the GSV covering. B, The small lumen of a hypoplastic GSV as seen by duplex scan. Note the compensatory enlargement of the overlying saphenous accessory. C, Real double GSV. The two veins course within the saphenous compartment and are connected by the saphenous ligament (arrow). D, Real double femoral vein. The two veins (in blue) course close to the femoral artery (in red).

Results/Reporting

- •Venous Map
- Report

Results Examples

Limitations & Examples

- -Anatomical
- −?SPJ or PV
- −?SFJ or FV
- —?Perforator Vein or Saphenous Trunk
- Operator
- —Training
- —Skill
- -Experience

Ankle Brachial Indices (ABI)

- 1. LEFT ARM PRESSURE With patient lying down, take the left brachial pressure. Record the value on the ABI/ Risk Assessment Form.
- 2. RIGHT ARM PRESSURE Take the right brachial pressure and record the value on the report form.
- 3. RIGHT ANKLE WAVEFORM*- Acquire arterial pulse with the Doppler at the right foot and print the waveform prior to taking the ankle pressure. Attach the waveform to the report form and mark the appropriate boxes.
- 4. RIGHT ANKLE PRESSURE Take the right ankle pressure and record the value on the report form.
- 5. LEFT ANKLE WAVEFORM * -Acquire arterial pulse with the Doppler at the left foot and print the waveform prior to taking the ankle pressure. Attach the waveform to the report form and mark the appropriate boxes.
- 6. LEFT ANKLE PRESSURE Take the left ankle pressure and record the value on the report form.
- 7. CALCULATE ABI VALUES Calculate the ABI for both sides. (For each side, divide the ankle pressure by the higher of the two arm pressures.)

										Ш	· II ·					ure				<u>''</u>	10	-											
																	•		٠,								_						
-	200	195	190	185	180	175	10000	165			150	1000	140				_	115	110	105	100	95	90	85	80	75	70	65	60	55	50	45	4
195	1000	1,00	.95	.93	.90	.88	.85	.83	.80	.78	.75	.73	.70	.68	.65	.63	.60	.58	.55	.53	.50 .51	.49	.45	.43	.40	.38	.35	.33	30	28	25 26	23	2
	1055	2000	1, 00	.97	.95	.92	.89	.87	.84	.79	.79	.76	.74	.71	.68	.66	.63	.61	.58	.55	53	.50	.45	.45	.41	.39	.37	.34	32	29	26	24	2
185	1000	-	1000000	1000	.97	.95	.92	.89	.86	.84	.81	.78	.76	.73	.70	.68	.65	.62	.59	.57	.54	.51	.49	.46	.43	.41	.38	.35	.32	.30	27	24	2
180	1000	Section 1	1000000	CONTRACTOR OF THE PERSON NAMED IN	1000	100000	.94	.92	.89	.86	.83	.81	.78	.75	.72	.69	.67	.64	.61	.58	.56	.53	.50	.47	.44	.42	.39	.36	33	.31	28	25	2
175	-	100000000000000000000000000000000000000	-			-		.94	.91	.89	.96	.83	.80	.77	.74	.71	.69	.66	63	.60	57	.54	.51	.49	.46	.43	.40	.37	34	31	29	26	2
-		-	1.12	-	-	10000000	1.00	.97	.94	.91	.88	.85	.82	.79	.76	.74	.71	.68	.65	.62	59	.56	.53	.50	.47	.44	.41	.38	35	32	29	26	2
165	200	10000000	50000000	150000	1000000	100,710	(MCIECE)	20000	.97	.94	91	.88	.85	.82	.79	.76	.73	.70	.67	.64	.61	.58	.55	.52	.48	.45	.42	.39	36	.33	30	27	2
-			1000000	00000	200000	100000	1.06	1000000		CONTROL OF	94	.91	.88	.84	.81	.78	.75	.72	.69	.66	.63	.59	.56	.53	.50	.47	.44	.41	.38	.34	31	28	2
_		100000	100000000	-	-	-	1.01	-	No.	1.00	.97	.94	.90	.87	.84	.81	.77	.74	.71	.68	.65	.61	.58	.55	.52	.48	.45	.42	39	.35	.32	29	2
150	1.33	1.30	1.27	1.23	1.20	1.17	1.13	1.10	1.07	1.03	1.00	.97	.93	.90	.87	.83	.80	.77	.73	.70	.67	.63	.60	.57	.53	.50	.47	.43	.40	.37	.33	.30	2
145	1.38	1.34	1.31	1.28	1.24	1.21	1.17	1.14	1.10	1.07	1.03	1.00	.97	.93	.90	.86	.83	.79	.76	.72	.69	.66	.62	.50	.55	.52	.48	.45	.41	.38	.34	.31	. 2
140	1.43	1.39	1.36	1.32	1.29	1.25	1.21	1.18	1.14	1.11	1.07	1.04	1.00	.96	.93	.89	.86	.82	.79	.75	.71	.68	.64	.61	.57	.54	.50	.46	.43	.39	.36	.32	4
135	1.48	1.44	1.41	1.37	1.33	1.30	1.26	1.22	1.19	1.15	1.11	1.07	1.04	1.00	.96	.93	.89	.85	.81	.78	.74	.70	.67	.63	.59	.56	.52	.48	.44	.41	.37	.33	2
130	1.54	1.50	1.46	1.42	1.38	1.35	1.31	1.27	1.23	1.19	1.15	1.12	1.08	1.04	1.00	.96	.92	.88	.85	.81	.77	.73	.69	.65	.62	.58	.54	.50	.46	.42	.38	.35	2
125	1.60	1.56	1.52	1.48	1.44	1.40	1.36	1.32	1.28	1.24	1.20	1.16	1.12	1.08	1.04	1.00	.96	.92	.88	.84	.80	.76	.72	.68	.64	.60	.56	.52	.48	.44	.40	.36	
120	1.67	1.63	1.58	1.54	1.50	1.46	1.42	1.38	1.33	1.29	1.25	1.21	1.17	1.13	1.08	1.04	1.00	.96	.92	.88	.83	.79	.75	.71	.67	.63	.58	.54	.50	.46	.42	.38	2
115	1.74	1.70	1.65	1.61	1.57	1.52	1.48	1.43	1.39	1.35	1.30	126	1.22	1.17	1.13	1.09	1.04	1.00	.96	.91	.87	.83	.78	.74	.70	.65	.61	.57	.52	.48	.43	.39	2
110	-	100000000000000000000000000000000000000	1000000	10000000	2000	-		-	-	-	-	11.00		200000		1.14	100000	0.000	100000	.95	.91	.86	.82	.77	.73	.68	.64	.59	.55	.50	.45	41	2
_		500000	1.81	-		-	1.62	20000000		-		200000	-			1.19	10000000	200	270000	1.00	.95	.90	.86	.81	.76	.71	.67	.62	.57	.52	.48	43	2
100		-	-	-		100000	1.70	-		_			-		-	1.25	_	-	-		1.00	-	.90	.85	.80	.75	.70	.65	.60	.55	.50	45	1
		0.000	10000000	2000000	2000	10000000	1000		1000	1000	10000000	1000			Deliver to	1.32	E-mounts	Description of the	INCOME.	1000000	200000	1.00	.95	.89	.84	.79	.74	.68	.63	.58	.53	A7	1
-	-	DOM:	100000000	CONTRACTOR OF THE PARTY OF	0.1000.00	100/1000		March 1997		-	10001100	10000			1000000	1.39	2000000		1000000	-	100000	1000000		.94	.89	.83	.78	.72	.67	.61	.56	50	9.1
_		1000000	COLUMN TO SERVICE	-	7.00	2000	200000	10000		10000		10000		-		1.47	-	100000	-		0000000	H102500		Marie Control	.94	.88	.82	.76	.71	.65	.59	.53 .56	
		0.90	x re 1.3) to 1) to 0	.30			Inco Nom	mpre	ssible	/Co Arter		ion																			10	1	

Resources

Books

–Gent, R (1997), Applied Physics and Technology of Diagnostic Ultrasound, Women's and Children's Hospital, South Australia.